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Background
Vulnerability detection for smart contracts

• Smart contracts are programs running 
on block chains

• They usually provide financial services

• Attacks on smart contracts has caused 
more than $1,000,000,000 loss

• More than 80% of the exploitable bugs 
are machine undetectable

• The reason is that most of them are 
business logic related
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Example
How to detect logic bugs?

• The first depositor could get all 
the shares and manipulate the 
price per share

• To detect the vuln in the example:

1. Know it is deposit

2. Find the share calculation 
statement

3. Check the if branch
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Challenges

1. There are too much code for 
LLMs to read in a project

2. It’s hard to understand the 
functionality of the given code

3. LLMs may not always give the 
correct answer
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Method 
Overview The FISRT tool on logic bug detection for smart contracts

• 1. Filtering for candidate code segments

• 2. Scenario and property matches

• 3. Static analysis-based confirmation
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Method
Step 1: Filtering
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Reachability Analysis

Use call graph to find reachable functions

Whitelist-based Filter

Signatures of commonly used libraries from OpenZeppelin

Text-based Filter

Function Name Function Content Access Control Call Chain



Method
Step 2: Scenario and property matching

• Scenario Matching
• Multiple-choice questions

• Matching the functionality of the 
code

• Property Matching
• Yes/No questions

• Matching the root cause of the 
vulnerabilities
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Method
Rules
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Method
Step 3: Static analysis-based confirmation

• LLM used to find related 
variables for static vulnerability 
checking
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Method
Step 3: Static analysis-based confirmation
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Apply static check rules

Dataflow Value Comparation Execution Order Function Call Arguments

Validate the variables/expressions

Validate the name Validate the description

Ask GPT model for related variables/expressions

Map variable to vulnerability models



Evaluation
Setup & Research Questions

• Model selection
• GPT-3.5 Turbo

• Dataset
• Top 200 contracts from 6 chains: 303 projects, 0 logic vulnerability
• Web3Bugs: 72 projects, 48 logic vulnerabilities
• DefiHacks: 13 projects, 14 logic vulnerabilities

• Research Questions:
• RQ1 & 2: How effective and precise is GPTScan?
• RQ3: How effective is the static analysis-based confirmation?
• RQ4: What’s the speed and financial cost of GPTScan?
• RQ5: Could GPTScan find new vulnerabilities?
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Evaluation
RQ1 & 2: Effectiveness and precision

• FP Rate:
• Top 200: 4.39%

• Precision:
• Web3Bugs: 57.14%

• DefiHacks: 90.91%

• Recall:
• Web3Bugs: 83.33%

• DefiHacks: 71.43%
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Evaluation
RQ1 & 2: Effectiveness and precision

• Baselines:
• Slither:

• Supported Types: Unauthorized 
Transfer (unchecked-transfer, 
arbitrary-send-eth, arbitrary-send-
erc20)

• 146 FPs, and 0 TPs on Web3Bugs

• MetaScan:
• Supported Types: Price Manipulation

• Recall of 58.33% and precision of 
100%
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Evaluation
RQ3: Effectiveness of static confirmation

• Reduced nearly 2/3 FPs

• Caused only 1 FN
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Evaluation
RQ4: Time and financial cost

• 14.39 seconds per thousand 
lines of code

• 0.01 USD per thousand lines of 
code
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Evaluation
RQ5: Newly detected vulnerabilities

• Found 3 new vulnerabilities
• 1 case of front running

• 1 case of price manipulation

• 1 case of risky first depositor
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Summary

1. GPTScan is the first tool for logic vulnerability detection on smart 
contracts

2. GPTScan combined static program analysis with LLMs for both 
semantic understanding and precision

3. GPTScan is more effective than traditional tools on logic bugs

4. GPTScan is cheap and fast

5. GPTScan is extensive by adding more rules
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Limitations

• Rule generation
• Time-consuming for manually tuned rules

• Low-accuracy for automatic generated (by LLM) rules

• Rule matching
• Prompt based matching will not work when the number of rules increased

• These two problems are partially solved in our new preprint
• LLM4Vuln: A Unified Evaluation Framework for Decoupling and 

Enhancing LLMs’ Vulnerability Reasoning

4/19/2024 Sun Yuqiang - ICSE 2024 18

https://arxiv.org/abs/2401.16185
https://arxiv.org/abs/2401.16185


Future AI4SE Framework
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