
GPTScan: Detecting Logic
Vulnerabilities in Smart
Contracts by Combining
GPT with Program Analysis

Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun
Wang, Zhengzi Xu, Xiaofei Xie, Yang Liu

Nanyang Technological University

MetaTrust Labs

East China Normal University

Xi’an Jiaotong University

Singapore Management University

Background
Vulnerability detection for smart contracts

• Smart contracts are programs running
on block chains

• They usually provide financial services

• Attacks on smart contracts has caused
more than $1,000,000,000 loss

• More than 80% of the exploitable bugs
are machine undetectable

• The reason is that most of them are
business logic related

4/19/2024 Sun Yuqiang - ICSE 2024 2

Example
How to detect logic bugs?

• The first depositor could get all
the shares and manipulate the
price per share

• To detect the vuln in the example:

1. Know it is deposit

2. Find the share calculation
statement

3. Check the if branch

4/19/2024 Sun Yuqiang - ICSE 2024 3

Challenges

1. There are too much code for
LLMs to read in a project

2. It’s hard to understand the
functionality of the given code

3. LLMs may not always give the
correct answer

4/19/2024 Sun Yuqiang - ICSE 2024 4

Method
Overview The FISRT tool on logic bug detection for smart contracts

• 1. Filtering for candidate code segments

• 2. Scenario and property matches

• 3. Static analysis-based confirmation

4/19/2024 Sun Yuqiang - ICSE 2024 5

Method
Step 1: Filtering

4/19/2024 Sun Yuqiang - ICSE 2024 6

Reachability Analysis

Use call graph to find reachable functions

Whitelist-based Filter

Signatures of commonly used libraries from OpenZeppelin

Text-based Filter

Function Name Function Content Access Control Call Chain

Method
Step 2: Scenario and property matching

• Scenario Matching
• Multiple-choice questions

• Matching the functionality of the
code

• Property Matching
• Yes/No questions

• Matching the root cause of the
vulnerabilities

4/19/2024 Sun Yuqiang - ICSE 2024 7

Method
Rules

4/19/2024 Sun Yuqiang - ICSE 2024 8

Method
Step 3: Static analysis-based confirmation

• LLM used to find related
variables for static vulnerability
checking

4/19/2024 Sun Yuqiang - ICSE 2024 9

Method
Step 3: Static analysis-based confirmation

4/19/2024 Sun Yuqiang - ICSE 2024 10

Apply static check rules

Dataflow Value Comparation Execution Order Function Call Arguments

Validate the variables/expressions

Validate the name Validate the description

Ask GPT model for related variables/expressions

Map variable to vulnerability models

Evaluation
Setup & Research Questions

• Model selection
• GPT-3.5 Turbo

• Dataset
• Top 200 contracts from 6 chains: 303 projects, 0 logic vulnerability
• Web3Bugs: 72 projects, 48 logic vulnerabilities
• DefiHacks: 13 projects, 14 logic vulnerabilities

• Research Questions:
• RQ1 & 2: How effective and precise is GPTScan?
• RQ3: How effective is the static analysis-based confirmation?
• RQ4: What’s the speed and financial cost of GPTScan?
• RQ5: Could GPTScan find new vulnerabilities?

4/19/2024 Sun Yuqiang - ICSE 2024 11

Evaluation
RQ1 & 2: Effectiveness and precision

• FP Rate:
• Top 200: 4.39%

• Precision:
• Web3Bugs: 57.14%

• DefiHacks: 90.91%

• Recall:
• Web3Bugs: 83.33%

• DefiHacks: 71.43%

4/19/2024 Sun Yuqiang - ICSE 2024 12

Evaluation
RQ1 & 2: Effectiveness and precision

• Baselines:
• Slither:

• Supported Types: Unauthorized
Transfer (unchecked-transfer,
arbitrary-send-eth, arbitrary-send-
erc20)

• 146 FPs, and 0 TPs on Web3Bugs

• MetaScan:
• Supported Types: Price Manipulation

• Recall of 58.33% and precision of
100%

4/19/2024 Sun Yuqiang - ICSE 2024 13

Evaluation
RQ3: Effectiveness of static confirmation

• Reduced nearly 2/3 FPs

• Caused only 1 FN

4/19/2024 Sun Yuqiang - ICSE 2024 14

Evaluation
RQ4: Time and financial cost

• 14.39 seconds per thousand
lines of code

• 0.01 USD per thousand lines of
code

4/19/2024 Sun Yuqiang - ICSE 2024 15

Evaluation
RQ5: Newly detected vulnerabilities

• Found 3 new vulnerabilities
• 1 case of front running

• 1 case of price manipulation

• 1 case of risky first depositor

4/19/2024 Sun Yuqiang - ICSE 2024 16

Summary

1. GPTScan is the first tool for logic vulnerability detection on smart
contracts

2. GPTScan combined static program analysis with LLMs for both
semantic understanding and precision

3. GPTScan is more effective than traditional tools on logic bugs

4. GPTScan is cheap and fast

5. GPTScan is extensive by adding more rules

4/19/2024 Sun Yuqiang - ICSE 2024 17

Limitations

• Rule generation
• Time-consuming for manually tuned rules

• Low-accuracy for automatic generated (by LLM) rules

• Rule matching
• Prompt based matching will not work when the number of rules increased

• These two problems are partially solved in our new preprint
• LLM4Vuln: A Unified Evaluation Framework for Decoupling and

Enhancing LLMs’ Vulnerability Reasoning

4/19/2024 Sun Yuqiang - ICSE 2024 18

https://arxiv.org/abs/2401.16185
https://arxiv.org/abs/2401.16185

Future AI4SE Framework

4/19/2024 Sun Yuqiang - ICSE 2024 19

Thanks & QA

SUN YUQIANG - ICSE 2024 4/19/2024 20

Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun Wang, Zhengzi Xu, Xiaofei Xie, Yang Liu

Email: suny0056@e.ntu.edu.sg

	幻灯片 1: GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by Combining GPT with Program Analysis
	幻灯片 2: Background Vulnerability detection for smart contracts
	幻灯片 3: Example How to detect logic bugs?
	幻灯片 4: Challenges
	幻灯片 5: Method Overview
	幻灯片 6: Method Step 1: Filtering
	幻灯片 7: Method Step 2: Scenario and property matching
	幻灯片 8: Method Rules
	幻灯片 9: Method Step 3: Static analysis-based confirmation
	幻灯片 10: Method Step 3: Static analysis-based confirmation
	幻灯片 11: Evaluation Setup & Research Questions
	幻灯片 12: Evaluation RQ1 & 2: Effectiveness and precision
	幻灯片 13: Evaluation RQ1 & 2: Effectiveness and precision
	幻灯片 14: Evaluation RQ3: Effectiveness of static confirmation
	幻灯片 15: Evaluation RQ4: Time and financial cost
	幻灯片 16: Evaluation RQ5: Newly detected vulnerabilities
	幻灯片 17: Summary
	幻灯片 18: Limitations
	幻灯片 19: Future AI4SE Framework
	幻灯片 20: Thanks & QA

